Search | Contact | Subscribe | Sign In or Register

Crisis Response Journal Crisis Response Journal

Speeding up underwater wireless networks

Posted on 28th January 2016 at 15:58pm

The speed of today’s underwater communication networks is still comparable to sluggish dial-up modems from the 1990s and this shortcoming hampers search and rescue operations, tsunami detection and other work. 

University at Buffalo engineers are developing hardware and software tools to help underwater telecommunication catch up to its over-the-air counterpart.

The amount of data that can be reliably transmitted underwater is much lower compared to land-based wireless network as land-based networks rely on radio waves, which work well in the air, but not so effectively underwater sxwx/123rf

“The remarkable innovation and growth we’ve witnessed in land-based wireless communications has not yet occurred in underwater sensing networks, but we’re starting to change that,” says Dimitris Pados, PhD, Clifford C Furnas Professor of Electrical Engineering in the School of Engineering and Applied Sciences at UB, a co-author of the study.

The amount of data that can be reliably transmitted underwater is much lower compared to land-based wireless networks. This is because land-based networks rely on radio waves, which work well in the air, but not so effectively under water.

As a result, sound waves (such as the noises dolphins and whales make) are the best alternative for underwater communication. The trouble is that sound waves encounter such obstacles as path loss, delay and Doppler, which limit their ability to transmit. Underwater communication is also hindered by the architecture of these systems, which lack standardisation, are often proprietary and not energy-efficient.

Pados and a team of researchers at UB are developing hardware and software – everything from modems that work underwater to open-architecture protocols – to address these issues. Of particular interest is merging a relatively new communication platform, software-defined radio, with underwater acoustic modems.

University at Buffalo students test their underwater wireless network in Lake Erie (Douglas Levere, University at Buffalo)

Traditional radios, such as an AM/FM transmitter, operate in a limited bandwidth (in this case, AM and FM). The only way to pick up additional signals, such as sound waves, is to take the radio apart and rewire it. Software-defined radio makes this step unnecessary. Instead, the radio is capable via computer of shifting between different frequencies of the electromagnetic spectrum. It is, in other words, a ‘smart’ radio.

Applying software-defined radio to acoustic modems could vastly improve underwater data transmission rates. For example, in experiments last fall in Lake Erie, just south of Buffalo, New York, graduate students from UB proved that software-defined acoustic modems could boost data transmission rates by 10 times what today’s commercial underwater modems are capable of.

The potential applications for such technology include:

  • Monitoring pollution.
  • Military and law enforcement work; for example, drug smugglers have deployed makeshift submarines to clandestinely ferry narcotics long distances underwater. An improved, more robust underwater sensor network could help spot these vessels.
  • The scuba industry; diver-to-diver walkie-talkies exist but their usefulness is limited by distance, clarity and other issues.
  • The energy industry; an improved network could make finding oil and natural gas easier.

The ongoing research is supported by the National Science Foundation. This work, including ongoing collaborations with Northeastern University, is described in a study – Software-Defined Underwater Acoustic Networks: Toward a High-Rate Real-Time Reconfigurable Modem – published in November in IEEE Communications.

Share Your Thoughts
Sign In or Register to leave a comment
Back to R & D Back to Top