Close This site uses cookies. If you continue to use the site you agree to this. For more details please see our cookies policy.

Search

Type your text, and hit enter to search:

Uncertain climate future could disrupt energy systems 

Extreme weather events, such as severe drought, storms, and heatwaves, have been forecast to become more commonplace. However, what has been studied less is the impact on energy systems and how communities can avoid costly disruptions, such as partial or total blackouts.

mainpic 2

An international team of scientists has published a new study proposing an optimisation methodology for designing climate-resilient energy systems and to help ensure that communities will be able to meet future energy needs given weather and climate variability.

"On one side is energy demand – there are different types of building needs, such as heating, cooling, and lighting. Because of long-term climate change and short-term extreme weather events, the outdoor environment changes, which leads to changes in building energy demand," said Tianzhen Hong, a Berkeley Lab scientist who helped design the study. "On the other side, climate can also influence energy supply, such as power generation from hydro, solar and wind turbines. Those could also change because of weather conditions."

Working with collaborators from Switzerland, Sweden, and Australia, and led by a scientist at the Ecole Polytechnique Fédérale de Lausanne (EPFL), the team developed a stochastic-robust optimisation method to quantify impacts and then used the data to design climate-resilient energy systems. Stochastic optimisation methods are often used when variables are random or uncertain. 

"Energy systems are built to operate for 30 or more years. Current practice is just to assume typical weather conditions today; urban planners and designers don't commonly factor in future uncertainties," said Hong, a computational scientist leading multi-scale energy modelling and simulation at Berkeley Lab. "There is a lot of uncertainty around future climate and weather."

‘Energy systems’ as defined in the study, provide energy needs, and sometimes energy storage, to a group of buildings. The energy supplied could include gas or electricity from conventional or renewable sources.

The researchers investigated a wide range of scenarios for 30 Swedish cities. They found that under some scenarios the energy systems in some cities would not be able to generate enough energy. Notably, climate variability could create a 34 per cent gap between total energy generation and demand and a 16 per cent drop in power supply reliability – a situation that could lead to blackouts.

"We observed that current energy systems are designed in a way that makes them highly susceptible to extreme weather events such as storms and heatwaves," said Dasun Perera, a scientist at EPFL's Solar Energy and Building Physics Laboratory and lead author of the study. "We also found that climate and weather variability will result in significant fluctuations in renewable power being fed into electric grids, as well as energy demand. This will make it difficult to match the energy demand and power generation. Dealing with the effects of climate change is going to prove harder than we previously thought."

The authors note that 3.5 billion people live in urban areas, consuming two-thirds of global energy, and that by 2050 urban areas are expected to hold more than two-thirds of the world's population. "Distributed energy systems that support the integration of renewable energy technologies will support the energy transition in the urban context and play a vital role in climate change adaptation and mitigation," they wrote. 

These research findings were recently published in Nature Energy

Image: Alexandr Mosigchuyuk/123rf 

    Tweet       Post       Post
Oops! Not a subscriber?

This content is available to subscribers only. Click here to subscribe now.

If you already have a subscription, then login here.